
Proceedings of the 2012 International Conference on 
Advanced Mechatronic Systems, Tokyo, Japan, September 18-21, 2012 

Online Hybrid Intelligent Tracking Control for Uncertain Nonlinear 
Dynamical Systems 

Yi-Hsing Chien, Wei-Yen Wang, Senior Member, IEEE, I-Hsum Li, Kuang-Yow Lian, Kuang-Yang 
Kou, and Tsu-Tian Lee, Fellow, IEEE 

Abstract-A novel online hybrid direct/indirect adaptive 

Petri fuzzy neural network (PFNN) controller with stare 

observer for a class of multi-input multi-output (MIMO) 

uncertain nonlinear systems is developed in the paper. By using 

the Lyapunov synthesis approach, the online observer-based 

tracking control law and the weight-update law of the adaptive 

hybrid intelligent controller are derived. According to the 

importance and viability of plant knowledge and control 

knowledge, a weighting factor is utilized to sum together the 

direct and indirect adaptive PFNN controllers. In this paper, we 

prove that the proposed online observer-based hybrid PFNN 

controller can guarantee that all signals involved are bounded 

and that the system outputs of the closed-loop system can track 

asymptotically the desired output trajectories. An example 

including four cases is illustrated to show the effectiveness of 

this approach. 

I. INTRODUCTION 

In recent years, fuzzy neural network (FNN) has been 
developed into a powerful tool for modeling, analysis, and 

control of various engineering systems [1-3]. In [4-6], the 
authors investigated a T-S fuzzy neural approach for only 
considering the stabilization problem. Wang et al. [7, 8] 
developed an adaptive fuzzy-neural controller for SISO 
nonlinear systems and so is hardly practical in real 
applications. Although Hwang and Hu [9] proposed a robust 
fuzzy-neural learning controller for MIMO manipulators, the 
state feedback control scheme does not always hold in 
practical applications, because models of those systems are 
not always known. Furthermore, more inputs (linguistic 
terms) and membership functions of the FNN are required for 
higher-order complex systems [10]. Adjusting the vast 
numbers of parameters will aggravate the already heavy 
computational burden. To solve the problem of spending 
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much computation time, an observer-based adaptive Petri 
fuzzy neural controller is developed for MIMO unknown 
nonlinear systems. In this case, using the Petri nets [11, 12] to 
alleviate the computation burden of parameter learning, the 
proposed robust tracking control scheme can deal with more 
kinds of unknown systems. 

The conventional adaptive FNN control has direct and 
indirect FNN adaptive control categories [13]. The direct 
adaptive FNN control using fuzzy logic systems as 
controllers has been proposed in [8, 14]. Therefore, linguistic 
fuzzy control rules can be directly incorporated into the 
controller. Also, the indirect adaptive FNN control using 
fuzzy descriptions to model the plant has been developed in 
[7, 15]. Then, fuzzy IF-THEN rules describing the plant can 
be directly incorporated into the indirect FNN controller. 
Recently, it is an important issue [16] to choose suitably 
direct or indirect adaptive control for nonlinear systems. In 
this paper, a hybrid direct/indirect adaptive PFNN control 
scheme is constructed by using a weighting factor to sum 
together the direct adaptive PFNN controller and indirect 
adaptive PFNN controller. The weighting factor can be 
adjusted by the tradeoff between plant knowledge and control 
knowledge. Therefore, the free parameters can be flexibly 
tuned by the adaptive law. 

In this paper, an observer-based adaptive tracking 
controller constructed by the PFNN is developed for a class 
of MIMO uncertain nonlinear systems. We replace the 
conventional fuzzy neural networks (FNNs) [7, 8, 10] with a 
novel PFNN and combine the direct adaptive controller with 
the indirect adaptive controller. The basic idea of the PFNN is 
that a system consists of a typical T -S fuzzy inference system 
constructed from a Petri neural network structure. Under the 
constraint that not all system states can be measured, the 
proposed output-feedback PFNN-based learning controller 
can guarantee that all signals involved are bounded and the 
outputs of the closed-loop system can track asymptotically 
the desired output trajectories, and the computation burden 
can be efficiently shortened. 

The paper is organized as follows. Section II reviews the 
problem formulation. In Section III, a brief description of 
PFNN is presented. Section IV investigates the hybrid PFNN 
controller with observer. To demonstrate the performance of 
the control scheme, a simulation example is provided In 
Section V. Finally, Section VI concludes the paper. 



II. PROBLEM FORMULATION 

Consider the nth-order MIMO uncertain nonlinear systems 
of the form [17] 

P 
Xi =A,Xi +B,(J;(x)+ Lglj(X)Uj +ddJ 

H 
(1) 

Yi = C; Xi' i = 1,2,···,p 
where 

0 0 0 

kl� ,C, �lI 
0 0 0 

Ai = 
0 0 0 1 
0 0 0 0 1jxl 

(2) 

T;Xlj 

and x = [ "/ "/ . . . ,,/]1 denote Al ' '''2' ' A p 
state vectors. I] + r2 + ... + r p = n . u = [ UI ,U2,·· ·,upf and 

Y =[YI'Y2,.··,Ypf are vectors of control inputs and system 

outputs, respectively. d = [d d ... d ]1 is a vector of d d1' d2' ' dp 
external disturbances. J; and g'l are unknown smooth 

functions. 
Define the reference vectors Ymi = [Ymi,Ymi,Ymi,···,y;;;-I )f, 

the tracking error vectors ei = Y mi -Xi' and the estimated 

tracking error vectors ei = Y mi - Xi where ei and Xi denote 

the estimations of ei and Xi' respectively. Based on the 

certainty equivalence approach, the control law is 

where 

, _ _ l_(_F(x) +[ (,,) (r,) 
• . .  (rp) ]l 

U - G(x) Yml ,Ym2 ' ,Ymp 

+[K�lel' K�2e2' · .. , K;pepf) 

gil gl2 gil' 
1 g21 gn g2 p F(x) = [J;,k···,!p] ,G(x)= 

gpl g p2 gPP 

(3) 

and K . = [ kC' ke , ... kc,]T are the feedback gain vectors, 
CI 1j' (r,-l) , ' I 

chosen such that the characteristic polynomials of Ai - BiK� 
are Hurwitz because (Ai' B,) are controllable. However, F(x) 

and G(x) are unknown, the ideal controller (3) cannot be 
implemented, and not all system states can be measured. 
Therefore, we design an observer to estimate the state vector 
in the following context. 

III. THE PETRI Fuzzy NEURAL NETWORK (PFNN) SYSTEMS 

The basic configuration of the Petri fuzzy neural network 
(PFNN) consists of a typical T-S fuzzy inference system 
constructed from a Petri neural network structure. The fuzzy 
logic system can be divided into two parts: some fuzzy 
IF-THEN rules and a fuzzy inference engine. The fuzzy 
inference engine uses the fuzzy IF-THEN rules to perform a 

mapping from an input linguistic vector to an output 
linguistic variable. The ith fuzzy IF-THEN rule is written as 

R(i) • It' . F.' d . F' d . Fi • ZI IS 1 an ... zn IS n an ···zn+p IS n+p (4) 
Then)ll = P;l=j + P;2Z2 + ... + P;(n+p)zn+p 

where z = [z Z • • •  Z ]1 E mn+p is a vector of linguistic P 2' ' n+p 
variables, )I represents the output of the fuzzy-neural 
network, Fi (i = 1 2 . . . h J. = 1 2 . . . p) are fuzzy sets, and 

} " "  ' " 

P;k (l = 1,2,···,n, k = 1,2,···,(n+ p)) are adjustable parameters 

which are called the weighting factors. 
Fig. I shows the configuration of the Petri fuzzy neural 

function approximator. It has a total of five layers. Nodes at 
input layer are input nodes (linguistic nodes) that represent 
input linguistic variables. Nodes at membership layer are 
term nodes which act as membership functions to represent 
the terms of the respective linguistic variables. The Petri layer 
of the PFNN in this paper for producing tokens makes use of 
competition laws as follows to select suitable fired nodes: 

t'. 
= 
I

I, /-1,; (ZI. ) 2. dth (5) I 0, Jlp(=I)<dth , 
where t' is the transition and dl is a dynamic threshold value I " 

varied with the corresponding tracking error to be tuned by 
the following equation: 

_ ka exp( -kb Ilell) (6) dlh - 1+ exp( -kh Ilell) 
where k" and kh are positive constants. e represents a 

tracking error vector. It means that if tracking errors become 
large, the threshold values will be decreased in order to fire 
more control rules for the present situation. Each node at rule 
layer is a fuzzy rule. Nodes at output layer are output nodes. 

Input Membership Petri Rule Output 

Layer Layer Layer Layer Layer 
��-------------------/ �--------------------/ 

Premise Consequence 

Fig. I. Configuration of the Petri fuzzy neural approximator 

From Fig. 1, the coefficients, P lk (l = 1,2,.··, p, 
k = 1, 2,. .. , (n + p)) , of the Petri fuzzy neural model are 
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(7) 

where f.1 (= ) are the membership function values of the r; } 

P 
�i = Aiei + Bi(a(O�",(x) + L O:if",(x)u'i) 

(13) 
fuzzy variable z), h is the number of the total IF-THEN rules, where Oft = 9ft -9'ft ' Og,! =9gil-9�i ' Ol) i =91)i -9;)i ' 
9 - [el e2 

• • •  eh]' is a adJ·ustable parameter vector, and a ik - ik' ik' ' ik 

fuzzy basis function vector 'II = [1JI1 , 1J12 ," .. , IJIh r is defined as 
n+p 

I1,u" (z) . /=1 I . 

Ij/=h n+p i=I, 2,· · ·,h . 

�)I1,uF: (z, )) 
1=1 J=l 

(8) 

IV. OBSERVER-BASED HYBRID DIRECT/INDIRECT TRACKING 

CONTROL SCHEME 

In this section, we develop the observer-based hybrid 
direct/indirect PFNN controller. The overall control law is 
constructed as 

u = au,(x 19fi)+ (I-a)ul)(x 199u) + u,(x 191)') (9) 

where u and u are indirect PFNN controller and direct , D 
PFNN controller, respectively. u, is the compensated control 

input vector. The indirect control law is described as 

UI =_,_I_(_F(x)+[/"j) ,···,Y�pp) f G(x) 
m 

[KT' KT' KT' ]T) + elel , e 2e2'··' epep • (10) 

Applying (9) and (10) to (1), we can obtain the error 
dynamic equation as 

p 
ei = A ie i -BiK�;e; + Bi(a(J;(x) -f,(x) + L(g,,(x)-g,,(x))ur/) 

p p 
J=[ 

+(I-a)Lgi,(X)(U' -u1lJ)-LgU(x)u'i -dJi) 
1=1 1=1 

(11 ) 

where eoi = Ymi -Yi denote the output tracking errors. The 

observation errors are defined as: e, = e, -e, and eOi = eOi - eo, . 
Then the error dynamics are 

p 
e; = (A; -KOiC;)e; + Bi(a(J;(x) -j,(x) + L (g,,(x) -gu (x))ur) 

p p 
)=1 

+ (1-a)Lgi/x)(U' -uu/))-B,Lgu(x)U'I-BAI, 
j=1 j=1 

(12) 

where K . = [kOi koi ... kOi]' are the observer gain vectors, 
m I ' 2 ' ' ", 

chosen such that the characteristic polynomials of 
Ai -KoiC; are strictly Hurwitz because ( C i , Ai) are 

observable. 
By using J;(xI9fi)=9�",(X)' g,!(xI9gil)=9�1"'(x) , and 

u . (x 19 .) = 91' .m(X) , (12) can be rewritten as 
/)j ])/ J)/'Y 
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I' T d 'J. = "' g. (x)u .. ' A = A -KC , an 
'I L if SJ I I m I l�l 

I' 
Wmi =a(J;(xI9'fi)-f,(x)+ L(g,!(xI9�1)-g,!(x))u'l) 

By using the strictly-positive-real (SPR) Lyapunov design 
approach to analyze the stability of (13) and generate the 
adaptive output feedback update laws for 9/i, 9glf, and 9Di, 

(13) can be rewritten as 
p p 

eo; = H,(s)(a(O�i"'(X) + L O�If",(x)ur/) -(I-a) Lg,,(X}9;iq>(X) 
j=1 1=1 

(15) 

where 

(16) 
The transfer functions Hi(s) are known stable transfer 

functions. In order to be able to use the SPR-Lyapunov 
design approach, (15) can be rewritten as 

p 
eOi = Hi(s)L,(s)(a(O�i"'(x) + L O�lj"'(X)UI/) -(1-a)O�!tq>(x) 

(17) 

where vft = L�I(S)Vi' wfi = L�I(S)Wi' Wi = Wmi +Ci, Ci = a(O�",(x)+ 
p p - - . 

L O�If"'(X)Ulj) -(1-a) L guCx)9�Jiq>(x) - L, (s)(a(9�i"'(X) + 
)� . )� 

f 9�U"'(X)UI) -(l-a)9�iq>(X)) and L,(s) are chosen so that 
J=! 

L�I(S) are proper stable transfer functions and Hi(S)Li(S) are 

proper SPR transfer functions. Suppose that 
L (s) = S(;;-I) +b S(;;-2) +b S(;;-3) + .. ·+b , such that H(s)L(s) i 1 2 (Ii-I) I I 

are proper SPR transfer functions. Then the state-space 
realization of (17) can be rewritten as 

p -
ei = Ac, ei +BC,(a(O�i"'(X)+ LO�If",(x)ulj)-( I-a)9�!tq>(x) 

)�1 

(18) 

where ACi =A i-KOIC; E�H"x", Bc, = [1,bpb2," ··,b(;;_l)f E\)ir" 
and Cc, = [ I,O,. ··,of E\)ir,. 

Theorem 1: Consider the nonlinear systems (1) with the 
following adaptive laws 



9fi = -YlieOi'l'(X) 
9g,! = -heOi'l'(X)UI1 
91)i = Y3ieOi<i'(X) 

(19) 

(20) 

(21 ) 

where Yli, Y2i , and Y3i are learning rates. Suppose that the 

compensated control inputs are chosen as jPi' if eOi ?: 0 and leoil > <Vi' 
USI= -�' ���i <oan��eOlI>

.
�" 

Pieoi / <Vi' It leoil < <Vi' 1-1,2, , p 

(22) 

where <Vi are positive constants. The control law is chosen as 

(9). Then 1'01 and eOi converge to zero as 1 ---+00. 
Proof To be omitted for matching the requirement of length. 

V. SIMULATION RESULTS 

This section presents the simulation results of the proposed 

observer-based hybrid Petri fuzzy neural network control for 

unknown nonlinear dynamical systems to illustrate that the 

tracking error of the closed-loop system can be made 

arbitrarily small. In addition, the simulation results confirm 

that the effect of all the estimation errors and external 

disturbances on the tracking error is attenuated efficiently by 

the proposed controller. 

Example 1: Consider the problem of balancing of an 

inverted pendulum on a cart shown in Fig. 2. Let x\ be the 

angle of the pendulum with respect to the vertical line. The 

dynamic equations of the inverted pendulum system [16] are 

where 

i = [:J = [� �] [ ;J+ [�] (f + gu+dd) 

Y = [1 O] [;J 

mIx; cos(x\) sin(x\) gvsin(x\) 

(23) 

f = ______ ""'MC!.......!.+-"m"----__ • g = M + m 
I(� _ mcos2(x\)) ' l(� - mcos2(x\)) 

3 M+m 3 M+m 
and M is the mass of the cart, m is the mass of the rod, 

gv = 9.8 7scc2 is the acceleration due to gravity, I is the half 

length of the rod, U is the control input, and dd is the external 

disturbance which is assumed to be a square-wave with 

amplitude ±0.03 and period 27r. In this example, we assume 

that M=1kg, m=0.1kg, and 1=0.5m, and four different cases 

for the initial states x(O) and x( O) are simulated. The four 

cases are shown in Table I. 

TABLE I 
FOUR CASES OF INITIAL STATES FOR EXAMPLE 1 

Cases 

Case 1 

Case 2 
Case 3 

Case 4 

Initial states 

x(O) = [0.1, ot, x(O) = [-0.15, or 
x(O) = [0.25, 0.25f, x(O) = [0 1, o.lf 
x(O) = [-0.1, or, x(O) = [0.15, or 
x(O)�[-O.IS, -0.15]', x(O)�[OIS, 015)' 

Fig. 2. Inverted pendulum system. 

I .... �" 

0.05 / ",'"". ��-------i 
" 

\\\",.,�=-------, 
Time(secl 

(a) Case 1 (b) Case 2 

(c) Case 3 (d) Case 4 

Fig. 3. Transient trajectories (0-0.3 sec) of the state x (solid line) and XI 
(dashed line) ofiaur cases. 

025 

0.2 

015 

-0.15 

Time (sec) 
Fig. 4. Trajectories of output y (solid line) of Case 1 and reference Ym 
(dashed line) with a = 0.5 (time=0-20 s). 

The design parameters are selected as Kc = [144, 24f, 

Ko = [60, 900f ' ka = 0.4 , kh = 300 , Y\ = Y2 = Y3 = 5 , and 

P = 20. We use the proposed control law in (9) to control the 

state XI of the system to track the reference signal 

Ym (t) = 0.037r sin(0.51) + 0.0 I7r sin(I.5t) . Fig. 3 illustrates that 

the curves of the states XI and XI of four cases if a = 0.5 is 
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chosen. The trajectories of system outputs y of four cases and 

reference signal Ym with a = 0.5 are shown in Figs. 4 and 5. 

The response of control input u of Case 1 with a = 0.5 is 

shown in Fig. 6. The simulation results indicate that the 

estimation state Xl takes very short time to catch up to the 

system state Xl . Moreover, the tracking performances of four 

cases are also very good. 

0.3 

-0.2 o 

-- ... -_ ..... --_ ... -_ .. -... 

01 0.2 0.3 04 05 0.6 0.7 0.8 09 
Time (sec) 

Fig. 5. Trajectories of outputs y of four cases and reference y", with a = 0.5 
(time=O-1 s). 

40,-�--�--��,-�------�----�---
30 

20 

10 

-10 

-20 

-30 

-40 

-50 L.-� __ � __ �� __ � ______ � ____ � ___ 
o 10 12 14 16 18 20 

Time (sec) 
Fig. 6. The response of control input u of Case 1 with a = 0.5 (time=0-20 s). 

VI. CONCLUSION 

For a class of MIMO uncertain nonlinear systems under the 

constraint that not all system states can be measured, a novel 

design of adaptive observer-based hybrid intelligent tracking 

controller using a weighting factor to combine direct PFNN 

controller with indirect PFNN controller is proposed in this 

paper. The free parameters of the adaptive hybrid 

direct/indirect intelligent controller can be tuned on-line by 

the observer-based robust control law and the adaptive update 

law. The proposed control scheme guarantees that all the 

tracking error of the closed-loop system can be made 

arbitrarily small. The computer simulation results for the 

inverted pendulum system show that the proposed 

observer-based hybrid adaptive PFNN controller can achieve 

the successful control and the desired tracking performance. 
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